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RELATION BETWEEN ELECTRICAL 
AND THERMAL CONDUCTIVITIES 

IN CHARGED CONDENSED PHASES 
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Panjah University, Chandigurh 160014, India 

'lnorgunic Chcmistry Department,Univcrsity qf Oxford, 
South Purks Roud, OxfimE, O X 1  3Q R,  England 

Data and simple theory is brought intocontact for the ratio ?./uTfor somecharged condensed phases, ?. being 
the thermal conductivity and u the electrical conductivity. The most extensive data presented is for liquid 
metals and deviations from the Weidmann- F'ranz law are discussed. But the paper is also concerned with 
metal nitrates (e.g., NaNO,) and with ionized gases and dilute plasmas. Returning to metals, cases be cited 
where 2 and u separately vary markedly across the solid-liquid transition, while the ratio ?JUT remains 
substantially constant. 

KEY WORDS: Lorenz number, liquid metals, molten metal nitrates. 

1 INTRODUCTION 

The theoretical study of the relation between thermal and electrical conductivities has 
a long history, and the review by Chester and Thellung' plus the book by Ziman' 
discuss the background, with especial emphasis on metals. Since for simple metals, 
electrons remain essentially degenerate well above the melting point, one can write 

where 
The right hand side constitutes the so called Lorenz number: 

is electronic term in thermal conductivity while cr is the electrical conductivity. 

L = 2 . 4 5 ~  lO-*WQK-'. ( 1  4 
Eq. ( I .  1)does not depend on such details as the shape ofthe Fermi surface, the density of 
electron states, the origin of the scattering etc, but it is based on the assumption of 
elastic scattering. In liquid metals, this is discussed, for example by Rice3. 

In relation to the measured thermal conductivity of metals, there is an excellent 
review by Powell4. We shall return to comment on some of the data he compiles in 
section 3 below. 
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Though the precise Lorenz number in Eq. (1.1) is obtained for degenerate electrons, 
we shall see in later sections that in classical charged condensed phases Eq. (1.1) is still 
useful in analyzing experimental measurements of thermal and electrical conductivity. 

2 SOME THEORY FOR (CLASSICAL) CHARGED PHASES WITH 
OVERALL NEUTRALLITY 

Let us start from the Green- Kubo expression for the thermal conductivity A given ass 

where C( t )  is the time correlation function of the heat current density, and J (  t )  is given 
by 

If the system consist of N +  cations and N -  anions (electrons say) then we can write 

C ( t )  % C’(t)  + c-(t), (2.3) 

C f  ( t )  and C- ( t )  being time correlation functions for cations and anions, respectively. 
In the first instance we consider cations and anions to be classical and write 

where C,, and -C, are the zeroth and second frequency sum rules of the spectral 
function of C(t ) .  If the correlation functions decay with a relaxation time z, we then 
write 

c+(-)(t)  = C,+‘-’F ( t / 4  (2.5) 

where F ( t / z )  is some decaying function of time. Using Eqs. (2.1) and (2.5) we obtain 

C,’Z+, 
A A+ =- 

Vk,T2  
(2.6a) 

(2.6b) 

where A = J: F ( x )  d x .  The relaxation time z can be calculated in terms of the sum rules 
of C( t )  by assuming that F ( x )  has a short-time expansion with coefficient oft as 1/25,. 
We then obtain 

z +  =(C,’/C,’)”2 (2.7a) 
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WIEDEMANN-  FRANZ LAW 41 

and 
z -  =(C,/C,)”2. (2.7b) 

Thus by knowing the sum rules of the correlation functions one can calculate the 
contributions to the thermal conductivity from the two species, separately. These sum 
rules are known for the one component system6 and we note from these that the mass 
dependence of thermal conductivity goes as the inverse square root of the mass. 
Following this we write for the two-component system: 

where B ,  and B ,  are functions independent of the masses. We shall test the above 
equation for the mass dependence of thermal conductivity using the known results for 
metal-nitrates in section 4. Here it may be noted that the cross contribution to the 
thermal conductivity is zero as the zero time value of the cross correlation function 
vanishes. In an appendix we shall extend the procedure for the calculation of thermal 
and electrical conductivities due to electrons (classical). It is also shown there that the 
value of L depends on the nature of the electrons and also on the treatment used for the 
evaluation of time correlation functions. 

3 DATA ON CONDENSED METALLIC PHASES 

Having given simple arguments as to the way deviations from constant Lorenz number 
might occur in classical charged liquids, we return to the degenerate electron system 
discussed already in section 1 .  It is in the area of pure metals, and intermetallic 
compounds, that the most systematic data is available. We therefore begin with pure 
metals, both solids and liquids, and then add some further data, especially on cerium 
compounds. 

3.1 

Figure 1 shows data for A/aT, all taken from  experiment^'-^, for some 3 3  different 
metals (see also Tab. 1). The dashed line shows the prediction of Eq. ( 1 . 1 ) .  Of course, the 
prediction is for A,/oT, where & is the purely electronic contribution to the thermal 
conductivity. However, in metals there has been little evidence that the ionic contribu- 
tion to A can be more than 1 or 2 percent of electronic contribution and this would 
always increase A/aT plotted in Figure 1 above the theoretical dashed line. Clearly there 
are observed deviations about ( L  x lo8) in Eq. (1.2) in both directions of approximately 
f 0.7 at most. 

Deviation from Lorenz Number ( E q .  (1 .1 ) )  in Pure Metals 

3.2 Data on Cerium Compounds 

The experimental ratio A/aT is now temperature dependent as can be seen from 
Figure 5 of the work of Gratz et al l0  for CeCu, and Y Cu,. It varies with temperature 
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Figure 1 
Horizontal line represent Eq. (1.1). 

Variation of experimental Lorenz number ( 1 0 - 8 W R K - 2 )  of metals with atomic number. 

Table I 
experiments. 

Lorenz numbers for some of the metals as obtained by 

Metul L x 10' Metal L x 10' Metnl L x 10' 

Li 
Na 
K 
c s  
Cd 
Hg 
Zn 
Al 
G a  
TI 
Sn 

2.6 Pb 
2.2 Sb 
2.1 Bi 
2.4 Ti 
2.5 Zr 
2.75 Hf 
3.2 Mo 
2.4 W 
2.07 Ru 
3.2 Ir  
2.9 Nh 

2.4 Ta 
2.6 Re 
2.5 0 s  
2.9 Pt 
2.25 In 
2.7 La 
2.6 Ce 
2.5 Pr 
2.45 Nd 
1.95 G d  
2.6 Dy 

2.4 
1.75 
1.75 
2.3 
2.7 
2.65 
2.56 
2.89 
2.21 
1.83 
2.34 

from 1.5 to 3.5 x lop8 WOK-'. The deviation in CeB, and CeCu, compounds" with 
large Kondo resistivity is markedly large and at low temperatures the Lorenz number is 
5 times that of Eq. (1.2). 
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3.3 

In Figures 2 and 3 we present the experimental data for thermal conductivity and 
Lorenz number of In due to Croldratt and Greenfield” on either side of the melting 
point. The vertical line separates the liquid and solid phases. The horizontal line 
represents Eq. (1.1). The conclusion seems clear: both 2 and u separately are sensitive to 
detailed changes in microscopic structure through the phase transition. The Lorenz 
number in the example exhibited is mainly, in contrast, insensitive to ionic structure. 

Efect ofSolid-Liquid Transition on 2, u und Lorenz Number 

4 CLASSICAL CHARGED FLUIDS 

Though, we have not found extensive data such as presented in section 3 for metallic 
phases, it is of interest to mention, in the present context, data in some classical charged 
systems. 

4.1 

The conductivity in molten salts is due to the motion of cations and anions. Thermal 
conductivity values’ of nitrates of Na, K and Ag are used to study the dependence on 
mass of the thermal conductivity of the two species in molten salts in analogy with two 
component state ofmetal (ions and electrons). Assuming that the anion contribution is 

Metal Nitrutes in Molten State 

0.75 1 I I 

Experiment o 
m.p - - - -  

Figure 2 Variation of experimentnl thermal conductivity o f  Indium with tcmperiiture. 
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Figure 3 Variation of experimental Lorenz number of Indium with temperature. 

same for three nitrates, the values obtained for the ratio of difference of thermal 
conductivity of metal nitrates are compared in Table 2 with the prediction of Eq. (2.8). 
(This leads us to conclude that the ionic contribution to the thermal conductivity of 
metals is very small as it varies as inverse square root of mass.) 

4.2 Ionized Gases and Plasma 

For the ionized gases the value of Lis known14 to depend on Z, the charge on the ions, 
and also on the degree of ionization. From classical theoretical work we note that for 

Table 2 Values of ratio of difference in thermal conductivity of 
metal nitrates. A&fi = ,IzNfl, - E.,,,,,,Am, = (l/& - I / & )  
and 1,2 and 3 represent Na, K and Ag respectively. 

-= 1.77 ~- ” I ’  - 1.93 

”” 2.077 

A’&23 Am23 

-- - 2.33 A m , ,  
Am12 

-= 
A 4 2  
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a fully ionized gas values of L(lOs)= 1.208,1.986 and 2.546 for Z =  1,2,4 and 16, 
respectively. The value of the Lorenz number is 1.488 for classical metal electrons which 
is obtainable only for a weakly ionized gas. Returning to the non-classical case the 
value of Lis close to that of Eq. (1.2) for dense fully ionized h y d r ~ g e n ' ~ ,  except at very 
high density and low temperature where the effect of inelastic scattering of electrons 
from ionic density fluctuation is around 30 percent. 

5 SUMMARY AND CONCLUSION 

The experimental data for the ratio E./oT has been brought into contact with 
theoretical predictions for condensed phases of metals, both of simple s p  character and 
for metals with d and withf'electrons. Figure 1 shows that while the theoretically 
predicted Lorenz number for degenerate electrons represents a useful average of the 
data, considerable fluctuations arise about this constant value. It is clear therefore that 
one must relax the assumptions underlying the deviation of the Wiedmann- 
Franz law for degenerate electrons. In particular inelastic scattering processes must 
play a role and probably one must also consider the effect of electron-electron 
interactions as it may cause additional departure from the predicted constant Lorenz 
number. 

A further point that is of interest, again for metals, is that the solid-liquid phase 
transition can markedly affect the behaviour of A and [T separately. However, for the 
example of indium metal, there is barely any sign of the phase transition in the 
experimental ratio 2/aT. 

Finally, we have added a brief discussion on classical charged fluids, namely some 
metal nitrates and ionized gases. This time the ratio A/oT must be compared with 
classical predictions. However for the ionized gases, this ratio depends on the charge 
state of the ion. Clearly further work, both experiment and theory, is required to explain 
quantitatively the microscopic mechanisms leading to departures from the Wiedmann - 
Franz law. 
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APPENDIX 

Transport processes involving electrons 

For a classical system composed of free electrons and ions we can write 

The expressions for the first two sum rules are obtained as 

and 

where 

(A.3) 

Here g ( r )  and U ( r )  are the pair correlation function and pair potential for the 
ion-electron interaction. Using Eqs. (A.2), (A.3) (2.6b) and (2.7b) we obtain 

If we use a similar procedure for the calculation of electrical conductivity we obtain 

ne2 
CT=A-. 

W O E  

Substituting Eq. (A.6) in Eq. (AS), we then find 
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On the other hand, if the time correlation function for heat current and electric current 
decay with the same relaxation time, say z, then we obtain 

Here, it may be noted that Eqs. (A.7) and (A.8) do not depend on our choice of 
functional form for the time development of the time correlation functions. Further 
from Eqs. ( A S )  and (A.6) we note that thermal and electrical conductivities both depend 
upon the ion-electron arrangement. But, the ratio A/aT does not depend either on 
temperature or on ion-electron correlations. This implies that Lorenz number should 
cross the phase change continuously. As we have treated electrons as classical: our 
results may therefore be applied to ionized gases or to a classical plasma. 
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